ExOne Showcases Ability to 3D Print Virtually Any Powder Material in New Corporate Video, “Let’s Make it Right”

0 35

a global leader in 3D printers and industrial sand using binder jetting technology ExOne company,

Yesterday announced that it is considering partnering with manufacturers to develop any powder material for their specific application.
In the new video titled “let’s make it right” unveiled yesterday, material dexterity and sustainability is highlighted and showcased and mark a 20-year celebration of the company and its employees as the company prepares to be acquired by Desktop metal.

Starting in the mid-90s,

ExOne started the commercial production of MIT’s patented binder jet 3D printing process, which converts powdered materials into precision parts or tooling at increased speed.
an industrial printhead that judiciously picks binder into a bed of powder particles producing a solid part one layer at a time, almost like printing on sheets of paper.

Launched in the late ’90s, the company’s RTS-300 was the first commercially available metal binder jet system.
later ExOne began binder jetting sand for metal casting cores and moulds.

Currently, ExOne’s portfolio includes eight sand and metal 3D printing systems able to print a wide array of powders into dense parts or even components with controlled porosity, for specified applications.

Binder jet 3D printing is one of the few 3D printing technologies that holds massive potential as an all-purpose manufacturing tool,

a swiss knife so to say; able to print just about any powdered material into any form or functional purpose.

in more recent years, improvements in binder chemistries and machine design have progressed leading us closer to that goal” says Rick Luca, EXOne chief technology officer and VP of new markets.

A one of kind flexibility in 3D printing.

Binder jetting is en as a sustainable and desirable production process.
mostly because of its speed .low cost and waste as well as broad material dexterity,

which is starting to gain more recognition because of ExOne’s progress in binder chemistries and machine design.
to attain high-density parts,

the printed part is sintered in a furnace to merge the particles into a high-density solid object.
porous parts, created with sand or other large particle media, will also be integrated with metals and resins to achieve desired properties and produce unique composites.

  • Nickel alloys
  • Aluminium alloys
  • Stainless steels, such as 17-4PH, 316L and 304L
  • Copper and copper alloys
  • Carbides
  • Refractory metals, such as tungsten and molybdenum alloys
  • Sands
  • Oxides
  • Nitrides
  • Tool steels, such as M2 and H13
  • Titanium alloys, such as Ti64
  • Precious metal alloys, including silver and gold

Waste products such as concrete and more

Get real time updates directly on you device, subscribe now.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More