Wednesday, September 17, 2025
Home3D PrintingSolid, Surface and Mesh 3D Design Formats Explained

Solid, Surface and Mesh 3D Design Formats Explained

There are three different formats you can work with in the 3D design process: solid, surface, and mesh. In this article, we’ll briefly explain these formats and what applications they are typically good for.

The Three 3D Design Formats and What They’re Good For

Solid

Solid modelling involves working with pre-defined shapes, such as cubes, cylinders, spheres and other polyhedrons, to add features or cut material away. It is typically used in mechanical and construction based applications, where specific parameters, measurements and shapes are more defined. Objects can also be cut open to reveal their internal features, and even stress tested as if they were objects in the real world. Solid modelling can be difficult to work with if you’re wanting to design more organic, amorphic shapes, so is less suited to artistic and creative applications.

Surface

With surface modelling, you work with vectors and tangents, manipulating the shape by “pulling and pushing” on control points (generally where tangents intersect) to fashion shapes that are more amorphic or fluid in nature. You can easily twist, turn, and bend surfaces. With surface modelling, you can design more organic shapes which would be hard to design in solid modelling software. Therefore, surface modelling is typically used by artists who wish to create pieces which have a focus on aesthetics and flow.

Mesh

Mesh modelling is similar to surface modelling. However, every curved surface, unlike the perfectly smooth vector surfaces you get with surface modelling, is made up of numerous flat triangular polygons. These polygons can be thought of as “pixels”, with each object having a defined resolution. In other words, the more polygons, the smoother the object appears. However, when you zoom in close, you’ll notice that the polygons that make up the curved surface are still flat. This may seem a little backward, however, it means that complex objects are easier to define mathematically. Therefore, mesh based models are easier to display in a range of different 3D design programs, and less data intensive when it comes to 3D printing the object.

Mesh modelling also makes it easier to add more photo-realistic rendering, texture and shading. Therefore, it is often favored by artists wanting to create more amorphic and organic designs, or animators who want to fully design and rig objects. It also offers the ability to adjust smaller details (polygons) within a shape without adjusting its entire form of the surface.

Solid or Mesh for 3D Printing?

Due to the simpler mathematics associated with mesh based designs they are less data intensive. This makes mesh formats more suited to 3D printing.

Sticking with mesh for 3D printing also has a number of other benefits. 3D CAD design programs, such as SelfCAD, allow you to easily import already designed objects from huge databases such as MyMiniFactory and Thingiverse and 3D print them with ease. These objects are provided in an STL file format, which is most common mesh based file and accepted by most 3D printers. You can’t really do that is a solid based design application.

In addition, with mesh based 3D design programs such as SelfCAD, using features such as loop, edge and vertex selection and editing, imported objects which are already in a mesh format can be easily adjusted and modified in accord with the user’s vision or design brief.

Other programs such as TinkerCad also allow users to import STL files and print predesigned 3D objects. The only problem is, there is a size limit on what can be imported. SelfCAD, on the other hand, can handle all the publicly available 3D objects.

In Summary

  • Solid modelling involves working with pre-defined shapes. It is generally used in more mechanical or construction based applications where amorphous or organic shapes are less desirable.
  • With surface modelling, you manipulate shapes by “pushing and pulling” on control points, and is generally used for more artistic purposes due to its ability to produce smoother, organic shapes with greater flow.
  • Unlike surface modelled objects, the surfaces of mesh based designs, even if they are curved or rounded, are made of flat polygons. This simplifies the mathematics of the design, making designs much easier to share and 3D print. It is also easier to make fine adjustments and render objects, making it the go to option for animators, for example.
  • And to print your models online visit  Sculpteo.com to be able to print them easily and accurately.

We hope you have found this article useful. Got any tips about solid, surface and mesh based design? Be sure to share them with us in the comments below!

Also read: Selfcad – A Short Review

Håkan Fägnell
Håkan Fägnellhttps://3dprinterchat.com/
Håkan Fägnell Started 3DPrinterChat.com and is a content marketer who formerly worked out of AddGeek´s Stockholm office. A writer by day and a reader by night, he is loathe to discuss himself in the third person, but can be persuaded to do so from time to time.
RELATED ARTICLES

5 COMMENTS

  1. I never knew this. I didn’t know the difference in these design formats. Thanks for the new info! I’ve worked many years in Adobe Photoshop and Illustrator and am used to working with the surface format I guess. Stretching, bending, pulling, and pushing objects is what I did mostly. Along with working with colors. That’s helped me in SelfCad and other design programs for 3D Printing. I also checked out Sculpteo.com, thanks for sharing. I love finding new links for 3D printing. I’m like a sponge right now soaking up all the info and links I can get. haha

  2. I do not have any formal training in design other than some drafting classes back in high school. (We’re talking pencils & paper drafting not CAD 😉 ) This is a quick and easy to understand explanation for three different 3D design formats.

Most Popular

Recent Comments

mperkins37 on 3D Printed Rockets
desitheblonde on New Low-Cost LSAM 3D Printer
Mad3DHatter on Flex3Drive Review
Salvatore_Lacorte on Guide to Successful ABS Printing
Jordi Lopez on 3D Printer Maintenance
Bill Nonnenmacher on 3D Printed Gears Easy!
Andy Marriott on Flex3Drive Review
Denny Hannaford on Creality Ender 3 Announced
Tom Baxter on 3D Printer Maintenance
Daniel Faegnell on How does 3D Printing work?
Tom Baxter on 3D Printer Maintenance
Tom Baxter on 3D Printer Maintenance
Henry Jolly on 3D Printer Maintenance
mperkins37 on 3D Printer Maintenance
Brian Martin on 3D Printer Maintenance
Melanie F. on DIY etching
Melissa Englebright on 3D Printer Maintenance
Kelly Freeman on 3D Printer Maintenance
Jeremy Fister on 3D Printer Maintenance
Ronan on DIY etching
mperkins37 on 3D Printer Maintenance
mperkins37 on 3D Printer Maintenance
mperkins37 on 3D Printer Maintenance
Leesa R McClure on 3D Printer Maintenance
Charles Goldman on 3D Printer Maintenance
Tom Baxter on 3D Printer Maintenance
mperkins37 on 3D Printer Maintenance
Carol Oddy on DIY etching
Tom Baxter on 3D Printer Maintenance
Michael Perkins on 3D Printer Maintenance
Michael Perkins on 3D Printer Maintenance
Michael Perkins on 3D Printer Maintenance
Richard Bynum on 3D Printer Maintenance
Richard Bynum on Slicers: Which one to use?
Brian Martin on Flexion Retrofit Kit Review
Carol Oddy on DIY etching
Richard Bynum on Flexion Retrofit Kit Review
Michael Perkins on Flexion Retrofit Kit Review
Richard Bynum on 3d printer Extruders
Michael Perkins on DIY etching
Richard Bynum on Rigid.ink Review
Justin K Jones on Wanhao D7 Review
Brian Martin on Creality Ender 3 Announced
Michael Perkins on Creality Ender 3 Announced
Richard Bynum on Autodesk to .STL
Chris Kockler on Creality Ender 3 Announced
Michael Perkins on MG Chemicals wood filament
Ronald Shropshire on MG Chemicals wood filament
Michael Perkins on MG Chemicals wood filament
Richard Bynum on 3D printed CNC Mill
Richard Bynum on 10 Fun Things to 3D Print
Justin Flugum on Creality Ender 3 Announced
Richard Bynum on Creality Ender 3 Announced
Justin Flugum on Creality Ender 3 Announced
David Griffith Rowe on Interesting 3D Printed Drone Projects
Richard Bynum on Wanhao D7 Review
Richard Bynum on ColorFabb Filament Review
Richard Bynum on Who is 3D-PT?
Richard Bynum on BuildTak – Is it Worth it?
Richard Bynum on Who’s 3D model is it?
Sumit Trivedi on MG Chemicals wood filament
Richard Bynum on CAD Review for 3D Printers
Asgor Reidaa on DIY etching
Asgor Reidaa on Wanhao D7 Review
Richard Bynum on MG Chemicals wood filament
Richard Bynum on 3d Print a Rubber band gun
Richard Bynum on 3d Print a Rubber band gun
Justin Flugum on Wanhao D7 Review
Tom Baxter on Wanhao D7 Review
Asgor Reidaa on 3d Print a Rubber band gun
Nathan Cox on Wanhao D7 Review
Nathan Cox on DIY etching
Tom Baxter on DIY etching
Richard Bynum on DIY etching
George Fomitchev on DIY etching
Richard Bynum on Wanhao D7 Review
Richard Bynum on Magnetic PLA Filament
Justin Flugum on Selfcad – A Short Review
Justin Flugum on Top 10 3D Printer Upgrades
Stan Baldwin on Vacuum Drying PLA Pt.1
Richard Bynum on 3D Printed Robots & Figures
Richard Bynum on Marlin a beginners guide
Richard Bynum on G-Codes – Wiki
Richard Bynum on How to NOT Be a 3DHubs Noob
Richard Bynum on 3D-Printing for Scuba Diving
Richard Bynum on Vacuum Drying PLA Pt.2
Asgor Reidaa on 3D Printing Dictionary
Richard Bynum on Vacuum Drying PLA Pt.1
Richard Bynum on What 3D-Printer to buy 2016
Richard Bynum on 3D Printing Homes
Madalyn Nguyen on 3D Printing Dictionary
Daniel Waldner on Prusa i3 MK3 – New Features
Richard Bynum on TOP 5 3D PRINTED CARS
Richard Bynum on 3D Printer safety tips
Annaloa Hilmarsdottir on The Anet A8 3D-Printer DIY Kit Review
David Robert Pemberton on 3D Printed Grenade Launcher
Justin Flugum on 3D Printer safety tips
Darren Scrubb on 3D Printing in the Classroom
Tom Baxter on 3D Printable Tools
Darren Scrubb on 3D Printing Homes
Darren Scrubb on 3D Printing Jewellery
Richard Bynum on Flex3Drive Review
Stan Baldwin on 3D Printed Grenade Launcher
Richard Bynum on Magigoo Adhesive Pen
Linda Beghtel on 3D Printing Jewellery
Richard Bynum on How much to Charge?
Justin Flugum on How much to Charge?
Jon Gardner on Big 3D Printers
Tom Baxter on 3D Printing Dictionary
Richard Bynum on 3D Print Wood Working Tools.
Richard Bynum on Sienci Labs Mill One
Lori Mahan on 3D Printing Jewellery
Tom Baxter on RIP Pinshape 2013-2016
Richard Bynum on 3D Printing Dictionary
Justin Flugum on 3D Printable Tools
B Michenfelder on Sienci Labs Mill One
John Smith on 3D Printing Jewellery
Richard Bynum on 3D Printed Gears Easy!
Stephen Shimatzki on The 3D Printing Gifts Guide 2018
Richard Bynum on Helpful Holiday Safety PSA.
Santiago Archilla on Making Money With 3D Printing
Braxten Brannon on 3D Printing in the Classroom
Stuart Hawton on 3D Print Wood Working Tools.
Richard Bynum on 3D Printing Jewellery
Tom Baxter on 3D Printing Jewellery
Stuart Hawton on 3D Printing Jewellery
Stuart Hawton on 3D Printing in the Classroom
Richard Bynum on 6 Taboos of 3D Printing
Dawn Mateo De Acusta on Holiday Gifts for Your 3D Printer
Todd Whetstone on Folgertech FT-5 R2 – Review
Todd Whetstone on Folgertech FT-5 R2 – Review
Richard Bynum on 3D Printing Filament Review
Sandi McGinnis on Folgertech FT-5 R2 – Review
Andreas Gasser on Folgertech FT-5 R2 – Review
Edward Dekkers on Folgertech FT-5 R2 – Review
Andrew Venkersammy on Holiday Gifts for Your 3D Printer
Braxten Brannon on 10 Hotends for your 3D printer
Jon Acosto (3DPrintnerd.com) on Calidum HALE Heated Bed – Review
Macario on Flex3Drive Review
Tom Baxter on Beer based Filament
Tom Baxter on Rick and Morty 3D Models
Richard Bynum on Rick and Morty 3D Models
Richard Bynum on Top 10 3D Printer Upgrades
eduardo martini on Prusa i3 MK3 – New Features
Richard Bynum on Random Models on Thingiverse
Richard Bynum on Random Models on Thingiverse
Michael Champlin on Random Models on Thingiverse
Richard Bynum on Random Models on Thingiverse
Michael Champlin on How to calibrate a 3D Printer
Michael Champlin on 3D Printer safety tips
Richard Bynum on Selfcad – A Short Review
Richard Bynum on Selfcad – A Short Review
Richard Bynum on The Ultimaker 2 3D Printer
Jared Heifetz on Top 5 3D Printers Under $300
Jared Heifetz on Top 5 3D Printers Under $300
Richard Bynum on Top 5 3D Printers Under $300
Jared Heifetz on 3D Printer safety tips
Richard Bynum on 3D Printer safety tips
Jared Heifetz on Magigoo Adhesive Pen
Jon Acosto (3DPrintnerd.com) on The 13 Phases of 3D Printing
Jared Heifetz on 3D Printable Tools
Richard Bynum on 3D Printable Tools
Jared Heifetz on 3D Printable Tools
David Klein on 3D Printable Tools
Richard Bynum on 3D Printable Tools
mperkins37 on 3D Printable Tools
Jared Heifetz on 3D Printable Tools
mperkins37 on 3D Printable Tools
Dewu Han on 3D Printable Tools
mperkins37 on 3D Printable Tools
Tania Alam on 3D Printable Tools
Jon Acosto (3DPrintnerd.com) on Advertising Your 3D Printing Business
mperkins37 on Sienci Labs Mill One
mperkins37 on Flex3Drive Review
Jeffrey M. Holliman on Flex3Drive Review
tpoage@mindspring.com on The Ultimaker 2 3D Printer
tpoage@mindspring.com on Snapmaker: The All-Metal 3D Printer
tpoage@mindspring.com on The best 3d print bed material
tpoage@mindspring.com on Snapmaker: The All-Metal 3D Printer
Stan Baldwin on 3D Printed Grenade Launcher
tpoage@mindspring.com on 3D Printed Grenade Launcher
tpoage@mindspring.com on A New Era in Desktop 3D Printing
tpoage@mindspring.com on Dynamo3D One Pro Unboxing & First Print
tpoage@mindspring.com on 3D Printed Guns as Illegal 3D File?
tpoage@mindspring.com on 3D Printed Guns as Illegal 3D File?
tpoage@mindspring.com on Get more from your cyclops scanners
tpoage@mindspring.com on 5 kits to get more from your 3D Printer
mperkins37 on TOP 5 3D PRINTED CARS
tpoage@mindspring.com on Top 10 3D Printer Upgrades
tpoage@mindspring.com on Media falsely attacks 3d printing again
tpoage@mindspring.com on 3D Printing Communities on Google+
tpoage@mindspring.com on 3D Print Wood Working Tools.
mperkins37 on TOP 5 3D PRINTED CARS
tpoage@mindspring.com on 3D Printing Market Trends For 2017
mperkins37 on TOP 5 3D PRINTED CARS
tpoage@mindspring.com on 3d Printing Brushless Motors and More
tpoage@mindspring.com on TOP 5 3D PRINTED CARS
jvastine on TOP 5 3D PRINTED CARS
mperkins37 on TOP 5 3D PRINTED CARS
tpoage@mindspring.com on 3D Printer manufacturers list 2020
tpoage@mindspring.com on How Strong is PLA? Lab Experiment!
tpoage@mindspring.com on Vacuum Drying PLA Pt.2
tpoage@mindspring.com on Top 6 Unique CAD Programs (2016-2017)
tpoage@mindspring.com on Finishing & Painting A 3D Printed Alien!
tpoage@mindspring.com on 10 Popular 3D Printing Fidget Patterns
tpoage@mindspring.com on Slicers: Which one to use?
tpoage@mindspring.com on Top 10 Large Format 3D Printers
tpoage@mindspring.com on 13 Best CAD Programs for Kids
tpoage@mindspring.com on 10 Places To Get Free 3D-Printing Files
tpoage@mindspring.com on Upgrading a Prusa i3
tpoage@mindspring.com on Top 7 3D Scanners on a Low Budget
tpoage@mindspring.com on 5 Fun Prints for your new 3d printer.
tpoage@mindspring.com on The Tantillus Part 1
tpoage@mindspring.com on What is Love? 3D Print Me (NSFW)
tpoage@mindspring.com on 3D Printing for the Second Cold War Pt.1
tpoage@mindspring.com on 5 Ways to Feed your 3D Printing Habit
tpoage@mindspring.com on Helpful Holiday Safety PSA.
tpoage@mindspring.com on 3D Printing a Quadcopter: Part 1
mperkins37 on Testing TinkerCAD Beta
tpoage@mindspring.com on Will your 3D-printer kill you?
mperkins37 on Testing TinkerCAD Beta
tpoage@mindspring.com on Big 3D Printers
mperkins37 on Testing TinkerCAD Beta
tpoage@mindspring.com on Testing TinkerCAD Beta
mperkins37 on Testing TinkerCAD Beta
tpoage@mindspring.com on Nanodax Glass Wool Polypropylene Review
tpoage@mindspring.com on Kanesis Hemp Bio Plastic PLA Review
tpoage@mindspring.com on Great 3D-Printers to look for 2016!
choschiba on 3D Printing Fidgets
tpoage@mindspring.com on Folgertech Kossel build Part 1
tpoage@mindspring.com on Build Plate Supported 3D Printing
tpoage@mindspring.com on Top 6 Unique CAD Programs (2016-2017)
tpoage@mindspring.com on Let’s move our prints to the cloud!
tpoage@mindspring.com on The Guardian of Techno phobia
tpoage@mindspring.com on 3D printing your own cosmetics with Mink
tpoage@mindspring.com on 3D Printing Fidgets
tpoage@mindspring.com on Folgertech Kossel build Part 1
tpoage@mindspring.com on Build Plate Supported 3D Printing
tpoage@mindspring.com on Ultimaker 3 – A Quick Review
Nick Kalogeropoulos on Why 3D Printing Must Alter Its Course
Andrew Werby on 3D Printing Homes
Andrew Werby on 3D Printing Homes
Nick Kalogeropoulos on 3D Printing in the Army: Here’s how
mperkins37 on 3D Printing Homes
mperkins37 on 3D Printing Homes
juggernath on 3D Printing Homes
mudface2003 on Upgrading a Prusa i3
Alexis Puentes on Five amazing DIY 3d printers.
lucpet on 3D Printing Piracy
Tony Davies on 10 Fun Things to 3D Print
Italo Soares on 3D Printed Gears Easy!
Frostbite on Vacuum Drying PLA Pt.1
3AM Productions on 3D printer after care Package
3AM Productions on RIP Pinshape 2013-2016
Italo Soares on About me: Italo Soares
Lays Rodrigues on Slicers: Which one to use?
Robbie Pearson on How To Use TinkerCAD
Robbie Pearson on Edit STL Files with TinkerCAD
Tony Davies on Marlin a beginners guide
3AM Productions on 3D PRINTED SEX TOYS
Alexis Puentes on Sintron Prusa i3 Review
Daniel F on Beer based Filament
Curtis J. Pratt on Beer based Filament
bioelectrobot on Beer based Filament
admin on Makergear M2