Sunday, November 23, 2025
HomeNewsApple Reveals How 3D Printing Powers Apple Watch Production

Apple Reveals How 3D Printing Powers Apple Watch Production

Apple has officially confirmed that it is using 3D printing technology in the production of the Apple Watch, marking a significant step forward in the company’s manufacturing strategy. This revelation, shared during a recent interview with Apple’s VP of Operations, sheds light on how additive manufacturing is helping Apple streamline production, reduce waste, and potentially reshape the future of hardware design.

Apple Embraces 3D Printing for Apple Watch Components

In a recent interview with Popular Mechanics, Apple’s Vice President of Operations, Rob Guzzo, revealed that the company is using 3D printing to manufacture components of the Apple Watch. Specifically, Apple is employing a technique known as binder jetting to produce the stainless steel chassis of certain Apple Watch models.

Binder jetting is an additive manufacturing process where a binding agent is selectively deposited onto a powder bed—typically metal powder—to build up a part layer by layer. Once printed, the part is sintered in a furnace to fuse the particles into a solid metal component. This method allows Apple to create complex geometries with less material waste compared to traditional subtractive manufacturing methods like CNC machining.

Why Apple Turned to Additive Manufacturing

Apple’s decision to integrate 3D printing into its production line is driven by several key factors. First, the company is constantly seeking ways to improve efficiency and reduce its environmental footprint. Traditional manufacturing methods often involve cutting away large amounts of material, which can be both wasteful and energy-intensive. In contrast, 3D printing builds parts additively, using only the material necessary for the final product.

Guzzo explained that the binder jetting process not only reduces waste but also shortens the time it takes to go from design to finished part. This agility allows Apple’s design and engineering teams to iterate more quickly and bring new products to market faster. Additionally, the ability to produce parts with complex internal structures opens up new possibilities for product design and performance.

Testing the Waters: Apple Watch as a Pilot Program

Apple began testing 3D printing for the Apple Watch in 2023, starting with select stainless steel models. The company used this as a pilot program to evaluate the feasibility of scaling additive manufacturing for mass production. According to Guzzo, the results have been promising, and Apple is now exploring how to expand the use of 3D printing to other product lines.

“We’ve been working on this for years,” Guzzo said. “We wanted to make sure the quality and performance met our standards before rolling it out more broadly.”

Apple’s cautious but deliberate approach reflects its commitment to maintaining the high standards of fit and finish that its products are known for. By starting with a relatively small and high-end product like the Apple Watch, Apple can refine its processes before applying them to larger-scale devices like iPhones or MacBooks.

The Future of 3D Printing in Consumer Electronics

Apple’s adoption of 3D printing is part of a broader trend in the consumer electronics industry. As additive manufacturing technologies mature, more companies are exploring how they can be used to improve product design, reduce costs, and enhance sustainability.

For Apple, the move aligns with its broader environmental goals. The company has pledged to become carbon neutral across its entire supply chain by 2030, and reducing material waste through 3D printing is one way to help achieve that target.

Moreover, the flexibility of 3D printing could enable Apple to offer more customization options in the future. Imagine a world where customers can choose from a wider range of materials, finishes, or even personalized engravings—all made possible by additive manufacturing.

Technical Details: How Binder Jetting Works

Binder jetting, the process Apple is using, is particularly well-suited for producing metal parts at scale. Unlike other metal 3D printing methods such as selective laser melting (SLM) or direct metal laser sintering (DMLS), binder jetting does not require high-powered lasers or complex support structures. This makes it faster and more cost-effective for certain applications.

Here’s a simplified breakdown of the process:

  • A thin layer of metal powder is spread across a build platform.
  • A print head deposits a liquid binding agent onto the powder, solidifying the desired areas.
  • This process repeats layer by layer until the part is complete.
  • The printed part, known as a “green part,” is then removed and sintered in a furnace to fuse the metal particles.

The result is a fully dense metal component with mechanical properties comparable to those made using traditional methods.

Implications for the Industry

Apple’s use of 3D printing could have ripple effects across the tech industry. As one of the world’s most influential hardware manufacturers, Apple’s endorsement of additive manufacturing may encourage other companies to explore similar technologies. It also signals to suppliers and contract manufacturers that 3D printing is becoming a viable option for high-volume production.

Furthermore, Apple’s investment in this space could drive innovation in 3D printing hardware, materials, and software. As the company pushes the limits of what’s possible, it may help accelerate the development of next-generation additive manufacturing solutions.

In summary, Apple’s confirmation that it is using 3D printing to produce Apple Watch components marks a significant milestone in the evolution of consumer electronics manufacturing. By leveraging binder jetting technology, Apple is not only improving efficiency and sustainability but also laying the groundwork for a more flexible and innovative future.

Source: 9to5Mac

Håkan Fägnell
Håkan Fägnellhttps://3dprinterchat.com/
Håkan Fägnell Started 3DPrinterChat.com and is a content marketer who formerly worked out of AddGeek´s Stockholm office. A writer by day and a reader by night, he is loathe to discuss himself in the third person, but can be persuaded to do so from time to time.
RELATED ARTICLES

Most Popular

Recent Comments

mperkins37 on 3D Printed Rockets
desitheblonde on New Low-Cost LSAM 3D Printer
Mad3DHatter on Flex3Drive Review
Salvatore_Lacorte on Guide to Successful ABS Printing
Jordi Lopez on 3D Printer Maintenance
Bill Nonnenmacher on 3D Printed Gears Easy!
Andy Marriott on Flex3Drive Review
Denny Hannaford on Creality Ender 3 Announced
Tom Baxter on 3D Printer Maintenance
Daniel Faegnell on How does 3D Printing work?
Tom Baxter on 3D Printer Maintenance
Tom Baxter on 3D Printer Maintenance
Henry Jolly on 3D Printer Maintenance
mperkins37 on 3D Printer Maintenance
Brian Martin on 3D Printer Maintenance
Melanie F. on DIY etching
Melissa Englebright on 3D Printer Maintenance
Kelly Freeman on 3D Printer Maintenance
Jeremy Fister on 3D Printer Maintenance
Ronan on DIY etching
mperkins37 on 3D Printer Maintenance
mperkins37 on 3D Printer Maintenance
mperkins37 on 3D Printer Maintenance
Leesa R McClure on 3D Printer Maintenance
Charles Goldman on 3D Printer Maintenance
Tom Baxter on 3D Printer Maintenance
mperkins37 on 3D Printer Maintenance
Carol Oddy on DIY etching
Tom Baxter on 3D Printer Maintenance
Michael Perkins on 3D Printer Maintenance
Michael Perkins on 3D Printer Maintenance
Michael Perkins on 3D Printer Maintenance
Richard Bynum on 3D Printer Maintenance
Richard Bynum on Slicers: Which one to use?
Brian Martin on Flexion Retrofit Kit Review
Carol Oddy on DIY etching
Richard Bynum on Flexion Retrofit Kit Review
Michael Perkins on Flexion Retrofit Kit Review
Richard Bynum on 3d printer Extruders
Michael Perkins on DIY etching
Richard Bynum on Rigid.ink Review
Justin K Jones on Wanhao D7 Review
Brian Martin on Creality Ender 3 Announced
Michael Perkins on Creality Ender 3 Announced
Richard Bynum on Autodesk to .STL
Chris Kockler on Creality Ender 3 Announced
Michael Perkins on MG Chemicals wood filament
Ronald Shropshire on MG Chemicals wood filament
Michael Perkins on MG Chemicals wood filament
Richard Bynum on 3D printed CNC Mill
Richard Bynum on 10 Fun Things to 3D Print
Justin Flugum on Creality Ender 3 Announced
Richard Bynum on Creality Ender 3 Announced
Justin Flugum on Creality Ender 3 Announced
David Griffith Rowe on Interesting 3D Printed Drone Projects
Richard Bynum on Wanhao D7 Review
Richard Bynum on ColorFabb Filament Review
Richard Bynum on Who is 3D-PT?
Richard Bynum on BuildTak – Is it Worth it?
Richard Bynum on Who’s 3D model is it?
Sumit Trivedi on MG Chemicals wood filament
Richard Bynum on CAD Review for 3D Printers
Asgor Reidaa on DIY etching
Asgor Reidaa on Wanhao D7 Review
Richard Bynum on MG Chemicals wood filament
Richard Bynum on 3d Print a Rubber band gun
Richard Bynum on 3d Print a Rubber band gun
Justin Flugum on Wanhao D7 Review
Tom Baxter on Wanhao D7 Review
Asgor Reidaa on 3d Print a Rubber band gun
Nathan Cox on Wanhao D7 Review
Nathan Cox on DIY etching
Tom Baxter on DIY etching
Richard Bynum on DIY etching
George Fomitchev on DIY etching
Richard Bynum on Wanhao D7 Review
Richard Bynum on Magnetic PLA Filament
Justin Flugum on Selfcad – A Short Review
Justin Flugum on Top 10 3D Printer Upgrades
Stan Baldwin on Vacuum Drying PLA Pt.1
Richard Bynum on 3D Printed Robots & Figures
Richard Bynum on Marlin a beginners guide
Richard Bynum on G-Codes – Wiki
Richard Bynum on How to NOT Be a 3DHubs Noob
Richard Bynum on 3D-Printing for Scuba Diving
Richard Bynum on Vacuum Drying PLA Pt.2
Asgor Reidaa on 3D Printing Dictionary
Richard Bynum on Vacuum Drying PLA Pt.1
Richard Bynum on What 3D-Printer to buy 2016
Richard Bynum on 3D Printing Homes
Madalyn Nguyen on 3D Printing Dictionary
Daniel Waldner on Prusa i3 MK3 – New Features
Richard Bynum on TOP 5 3D PRINTED CARS
Richard Bynum on 3D Printer safety tips
Annaloa Hilmarsdottir on The Anet A8 3D-Printer DIY Kit Review
David Robert Pemberton on 3D Printed Grenade Launcher
Justin Flugum on 3D Printer safety tips
Darren Scrubb on 3D Printing in the Classroom
Tom Baxter on 3D Printable Tools
Darren Scrubb on 3D Printing Homes
Darren Scrubb on 3D Printing Jewellery
Richard Bynum on Flex3Drive Review
Stan Baldwin on 3D Printed Grenade Launcher
Richard Bynum on Magigoo Adhesive Pen
Linda Beghtel on 3D Printing Jewellery
Richard Bynum on How much to Charge?
Justin Flugum on How much to Charge?
Jon Gardner on Big 3D Printers
Tom Baxter on 3D Printing Dictionary
Richard Bynum on 3D Print Wood Working Tools.
Richard Bynum on Sienci Labs Mill One
Lori Mahan on 3D Printing Jewellery
Tom Baxter on RIP Pinshape 2013-2016
Richard Bynum on 3D Printing Dictionary
Justin Flugum on 3D Printable Tools
B Michenfelder on Sienci Labs Mill One
John Smith on 3D Printing Jewellery
Richard Bynum on 3D Printed Gears Easy!
Stephen Shimatzki on The 3D Printing Gifts Guide 2018
Richard Bynum on Helpful Holiday Safety PSA.
Santiago Archilla on Making Money With 3D Printing
Braxten Brannon on 3D Printing in the Classroom
Stuart Hawton on 3D Print Wood Working Tools.
Richard Bynum on 3D Printing Jewellery
Tom Baxter on 3D Printing Jewellery
Stuart Hawton on 3D Printing Jewellery
Stuart Hawton on 3D Printing in the Classroom
Richard Bynum on 6 Taboos of 3D Printing
Dawn Mateo De Acusta on Holiday Gifts for Your 3D Printer
Todd Whetstone on Folgertech FT-5 R2 – Review
Todd Whetstone on Folgertech FT-5 R2 – Review
Richard Bynum on 3D Printing Filament Review
Sandi McGinnis on Folgertech FT-5 R2 – Review
Andreas Gasser on Folgertech FT-5 R2 – Review
Edward Dekkers on Folgertech FT-5 R2 – Review
Andrew Venkersammy on Holiday Gifts for Your 3D Printer
Braxten Brannon on 10 Hotends for your 3D printer
Jon Acosto (3DPrintnerd.com) on Calidum HALE Heated Bed – Review
Macario on Flex3Drive Review
Tom Baxter on Beer based Filament
Tom Baxter on Rick and Morty 3D Models
Richard Bynum on Rick and Morty 3D Models
Richard Bynum on Top 10 3D Printer Upgrades
eduardo martini on Prusa i3 MK3 – New Features
Richard Bynum on Random Models on Thingiverse
Richard Bynum on Random Models on Thingiverse
Michael Champlin on Random Models on Thingiverse
Richard Bynum on Random Models on Thingiverse
Michael Champlin on How to calibrate a 3D Printer
Michael Champlin on 3D Printer safety tips
Richard Bynum on Selfcad – A Short Review
Richard Bynum on Selfcad – A Short Review
Richard Bynum on The Ultimaker 2 3D Printer
Jared Heifetz on Top 5 3D Printers Under $300
Jared Heifetz on Top 5 3D Printers Under $300
Richard Bynum on Top 5 3D Printers Under $300
Jared Heifetz on 3D Printer safety tips
Richard Bynum on 3D Printer safety tips
Jared Heifetz on Magigoo Adhesive Pen
Jon Acosto (3DPrintnerd.com) on The 13 Phases of 3D Printing
Jared Heifetz on 3D Printable Tools
Richard Bynum on 3D Printable Tools
Jared Heifetz on 3D Printable Tools
David Klein on 3D Printable Tools
Richard Bynum on 3D Printable Tools
mperkins37 on 3D Printable Tools
Jared Heifetz on 3D Printable Tools
mperkins37 on 3D Printable Tools
Dewu Han on 3D Printable Tools
mperkins37 on 3D Printable Tools
Tania Alam on 3D Printable Tools
Jon Acosto (3DPrintnerd.com) on Advertising Your 3D Printing Business
mperkins37 on Sienci Labs Mill One
mperkins37 on Flex3Drive Review
Jeffrey M. Holliman on Flex3Drive Review
tpoage@mindspring.com on The Ultimaker 2 3D Printer
tpoage@mindspring.com on Snapmaker: The All-Metal 3D Printer
tpoage@mindspring.com on The best 3d print bed material
tpoage@mindspring.com on Snapmaker: The All-Metal 3D Printer
Stan Baldwin on 3D Printed Grenade Launcher
tpoage@mindspring.com on 3D Printed Grenade Launcher
tpoage@mindspring.com on A New Era in Desktop 3D Printing
tpoage@mindspring.com on Dynamo3D One Pro Unboxing & First Print
tpoage@mindspring.com on 3D Printed Guns as Illegal 3D File?
tpoage@mindspring.com on 3D Printed Guns as Illegal 3D File?
tpoage@mindspring.com on Get more from your cyclops scanners
tpoage@mindspring.com on 5 kits to get more from your 3D Printer
mperkins37 on TOP 5 3D PRINTED CARS
tpoage@mindspring.com on Top 10 3D Printer Upgrades
tpoage@mindspring.com on Media falsely attacks 3d printing again
tpoage@mindspring.com on 3D Printing Communities on Google+
tpoage@mindspring.com on 3D Print Wood Working Tools.
mperkins37 on TOP 5 3D PRINTED CARS
tpoage@mindspring.com on 3D Printing Market Trends For 2017
mperkins37 on TOP 5 3D PRINTED CARS
tpoage@mindspring.com on 3d Printing Brushless Motors and More
tpoage@mindspring.com on TOP 5 3D PRINTED CARS
jvastine on TOP 5 3D PRINTED CARS
mperkins37 on TOP 5 3D PRINTED CARS
tpoage@mindspring.com on 3D Printer manufacturers list 2020
tpoage@mindspring.com on How Strong is PLA? Lab Experiment!
tpoage@mindspring.com on Vacuum Drying PLA Pt.2
tpoage@mindspring.com on Top 6 Unique CAD Programs (2016-2017)
tpoage@mindspring.com on Finishing & Painting A 3D Printed Alien!
tpoage@mindspring.com on 10 Popular 3D Printing Fidget Patterns
tpoage@mindspring.com on Slicers: Which one to use?
tpoage@mindspring.com on Top 10 Large Format 3D Printers
tpoage@mindspring.com on 13 Best CAD Programs for Kids
tpoage@mindspring.com on 10 Places To Get Free 3D-Printing Files
tpoage@mindspring.com on Upgrading a Prusa i3
tpoage@mindspring.com on Top 7 3D Scanners on a Low Budget
tpoage@mindspring.com on 5 Fun Prints for your new 3d printer.
tpoage@mindspring.com on The Tantillus Part 1
tpoage@mindspring.com on What is Love? 3D Print Me (NSFW)
tpoage@mindspring.com on 3D Printing for the Second Cold War Pt.1
tpoage@mindspring.com on 5 Ways to Feed your 3D Printing Habit
tpoage@mindspring.com on Helpful Holiday Safety PSA.
tpoage@mindspring.com on 3D Printing a Quadcopter: Part 1
mperkins37 on Testing TinkerCAD Beta
tpoage@mindspring.com on Will your 3D-printer kill you?
mperkins37 on Testing TinkerCAD Beta
tpoage@mindspring.com on Big 3D Printers
mperkins37 on Testing TinkerCAD Beta
tpoage@mindspring.com on Testing TinkerCAD Beta
mperkins37 on Testing TinkerCAD Beta
tpoage@mindspring.com on Nanodax Glass Wool Polypropylene Review
tpoage@mindspring.com on Kanesis Hemp Bio Plastic PLA Review
tpoage@mindspring.com on Great 3D-Printers to look for 2016!
choschiba on 3D Printing Fidgets
tpoage@mindspring.com on Folgertech Kossel build Part 1
tpoage@mindspring.com on Build Plate Supported 3D Printing
tpoage@mindspring.com on Top 6 Unique CAD Programs (2016-2017)
tpoage@mindspring.com on Let’s move our prints to the cloud!
tpoage@mindspring.com on The Guardian of Techno phobia
tpoage@mindspring.com on 3D printing your own cosmetics with Mink
tpoage@mindspring.com on 3D Printing Fidgets
tpoage@mindspring.com on Folgertech Kossel build Part 1
tpoage@mindspring.com on Build Plate Supported 3D Printing
tpoage@mindspring.com on Ultimaker 3 – A Quick Review
Nick Kalogeropoulos on Why 3D Printing Must Alter Its Course
Andrew Werby on 3D Printing Homes
Andrew Werby on 3D Printing Homes
Nick Kalogeropoulos on 3D Printing in the Army: Here’s how
mperkins37 on 3D Printing Homes
mperkins37 on 3D Printing Homes
juggernath on 3D Printing Homes
mudface2003 on Upgrading a Prusa i3
Alexis Puentes on Five amazing DIY 3d printers.
lucpet on 3D Printing Piracy
Tony Davies on 10 Fun Things to 3D Print
Italo Soares on 3D Printed Gears Easy!
Frostbite on Vacuum Drying PLA Pt.1
3AM Productions on 3D printer after care Package
3AM Productions on RIP Pinshape 2013-2016
Italo Soares on About me: Italo Soares
Lays Rodrigues on Slicers: Which one to use?
Robbie Pearson on How To Use TinkerCAD
Robbie Pearson on Edit STL Files with TinkerCAD
Tony Davies on Marlin a beginners guide
3AM Productions on 3D PRINTED SEX TOYS
Alexis Puentes on Sintron Prusa i3 Review
Daniel F on Beer based Filament
Curtis J. Pratt on Beer based Filament
bioelectrobot on Beer based Filament
admin on Makergear M2